

Let us discuss about escape speed and orbital speed, satellites, orbital speed and time period, energy of an orbiting satellite, geo-stationary and polar satellite and weightlessness.

Expression for escape speed:

- ❖ Consider an object of mass M on the surface of the Earth.
- ❖ When it is thrown up with an initial speed v_i , the initial total energy of the object is

$$E_i = \frac{1}{2} M v_i^2 - \frac{G M M_E}{R_E} \quad (6.53)$$

❖

- ❖ Where M_E is the mass of earth and R_E radius of the earth.
- ❖ The term is the potential energy of the mass M .
- ❖ When the object reaches a height far away from the earth and hence treated as approaching infinity, the gravitational potential energy becomes zero as well.
- ❖ Therefore the final total energy of the object becomes zero.
- ❖ This is for minimum energy and for minimum speed to escape. otherwise kinetic energy can be non-zero.

$$E_f = 0$$

According to the law of energy conservation,

$$E_i = E_f \quad (6.54)$$

Substituting (6.53) in (6.54) we get,

$$\frac{1}{2} M v_i^2 - \frac{G M M_E}{R_E} = 0$$
$$\frac{1}{2} M v_i^2 = \frac{G M M_E}{R_E} \quad (6.55)$$

❖

- ❖ The escape speed, the minimum speed required by an object to escape from earth's gravitational field, replacing v_i with v_e

$$\frac{1}{2} M v_e^2 = \frac{G M M_E}{R_E}$$

$$v_e^2 = \frac{G M M_E}{R_E} \cdot \frac{2}{M}$$

$$v_e^2 = \frac{2 G M_E}{R_E}$$

Using $g = \frac{G M_E}{R_E^2}$,

$$v_e^2 = 2gR_E$$

$$v_e = \sqrt{2gR_E} \quad (6.56)$$

- ❖ From equation 6.56 the escape speed depends on two factors.acceleration due to gravity and radius of the earth.
- ❖ By substituting the values of g (9.8m/s^2) and $R_E=6400 \text{ KM}$,the escape speed of earth is $v_e=11.2 \text{km/s}$.

Expression for time period of satellite orbiting the earth:

The distance covered by the satellite during one rotation in its orbit is equal to $2\pi(R_E + h)$ and time taken for it is the time period, T. Then

$$\text{Speed } v = \frac{\text{Distance travelled}}{\text{Time taken}} = \frac{2\pi(R_E + h)}{T}$$

$$\sqrt{\frac{GM_E}{(R_E + h)}} = \frac{2\pi(R_E + h)}{T} \quad (6.59)$$

$$T = \frac{2\pi}{\sqrt{GM_E}} (R_E + h)^{3/2} \quad (6.60)$$

Squaring both sides of the equation (6.60), we get

$$T^2 = \frac{4\pi^2}{GM_E} (R_E + h)^3$$

$$\frac{4\pi^2}{GM_E} = \text{constant say } c$$

$$T^2 = c(R_E + h)^3 \quad (6.61)$$

Equation (6.61) implies that a satellite orbiting the Earth has the same relation between time and distance as that of Kepler's law of planetary motion. For a satellite orbiting near the surface of the Earth, h is negligible compared to the radius of the Earth R_E . Then,

$$T^2 = \frac{4\pi^2}{GM_E} R_E^3$$

$$T^2 = \frac{4\pi^2}{GM_E / R_E^2} R_E$$

$$T^2 = \frac{4\pi^2}{g} R_E$$

since $GM_E / R_E^2 = g$

$$T = 2\pi \sqrt{\frac{R_E}{g}} \quad (6.62)$$

By substituting the values of $R_E = 6.4 \times 10^6$ m and $g = 9.8$ m s⁻², the orbital time period is obtained as $T \approx 85$ minutes.

Energy of an orbiting satellite:

The total energy of a satellite orbiting the earth at a distance h from the surface of the earth.

- ❖ The energy of the satellite is sum of its kinetic energy and gravitational potential energy
- ❖ The potential energy of the satellite is

$$U = -\frac{GM_s M_E}{(R_E + h)} \quad (6.63)$$

Here M_s - mass of the satellite, M_E - mass of the Earth, R_E - radius of the Earth.

The Kinetic energy of the satellite is

$$K.E = \frac{1}{2} M_s v^2 \quad (6.64)$$

Here v is the orbital speed of the satellite and is equal to

$$v = \sqrt{\frac{GM_E}{(R_E + h)}} \quad (6.65)$$

Substituting the value of v in (6.64), the kinetic energy of the satellite becomes,

$$K.E = \frac{1}{2} \frac{GM_E M_s}{(R_E + h)}$$

Weightlessness:

- ❖ Objects on earth experience the gravitational force on earth.
- ❖ The gravitational force acting on an object of mass m is mg .
- ❖ The weight w is defined as downward force whose magnitude w is equal to that of upward force that must be applied to object to it rest or at constant velocity relative to the earth.
- ❖ The direction of weight is in the direction of gravitational force.
- ❖ The magnitude of weight of an object is denoted as $w=N=mg'$

Apparent weight in elevators.:

Let us consider a man inside an elevator in the following scenarios.

- ❖ When a man is standing in the elevator there are two factors acting on him.
- ❖ Gravitational force which acts downward .if we take the vertical direction as positive y -direction the gravitational force acting on the man is

$$\vec{F}_G = -mg\hat{j}$$

- ❖ The normal force exerted by floor on the man which acts vertically upward,

$$\vec{N} = N\hat{j}$$

- ❖ **Case1:**when the elevator is at rest:

The acceleration of the man is zero. Therefore the net force acting on the man is zero. With respect to inertial frame (ground), applying Newton's second law on the man,

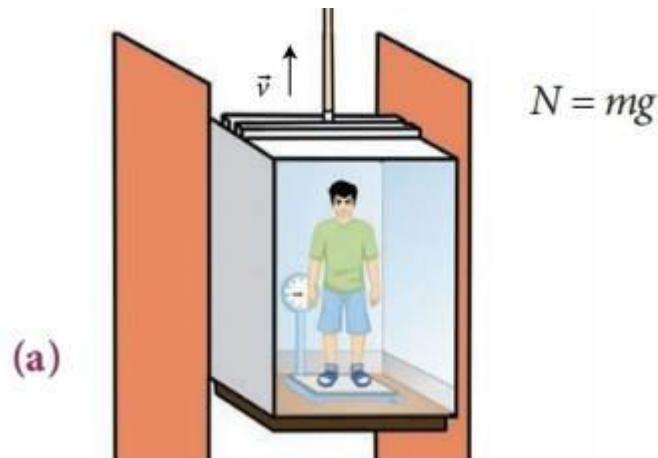
$$\begin{aligned}\vec{F}_G + \vec{N} &= 0 \\ -mg\hat{j} + N\hat{j} &= 0\end{aligned}$$

By comparing the components, we can write

$$N - mg = 0 \text{ (or) } N = mg \quad (6.67)$$

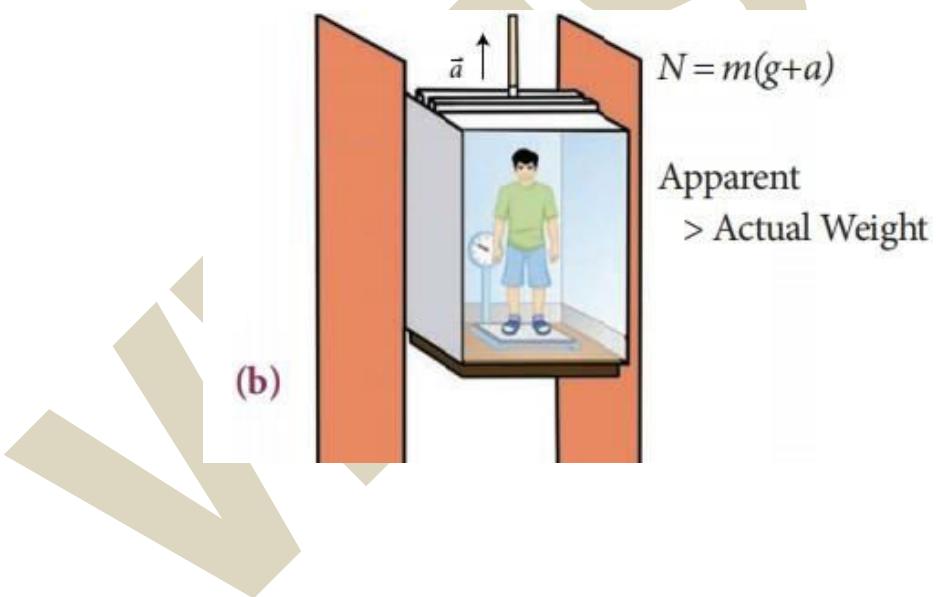
Since weight, $W = N$, the apparent weight of the man is equal to his actual weight.

❖ **Case2:**when elevator is moving uniformly in the upward or downward direction:



- ❖ In the uniform motion (constant velocity) the net force acting on the man is still zero.
- ❖ Hence ,in this case also the apparent weight on the man is equal to his actual weight as shown in figure (a).

Case 3:when the elevator is accelerating upwards:



If an elevator is moving with upward acceleration ($\vec{a} = a\hat{j}$) with respect to inertial frame (ground), applying Newton's second law on the man,

$$\vec{F}_G + \vec{N} = m\vec{a}$$

Writing the above equation in terms of unit vector in the vertical direction,

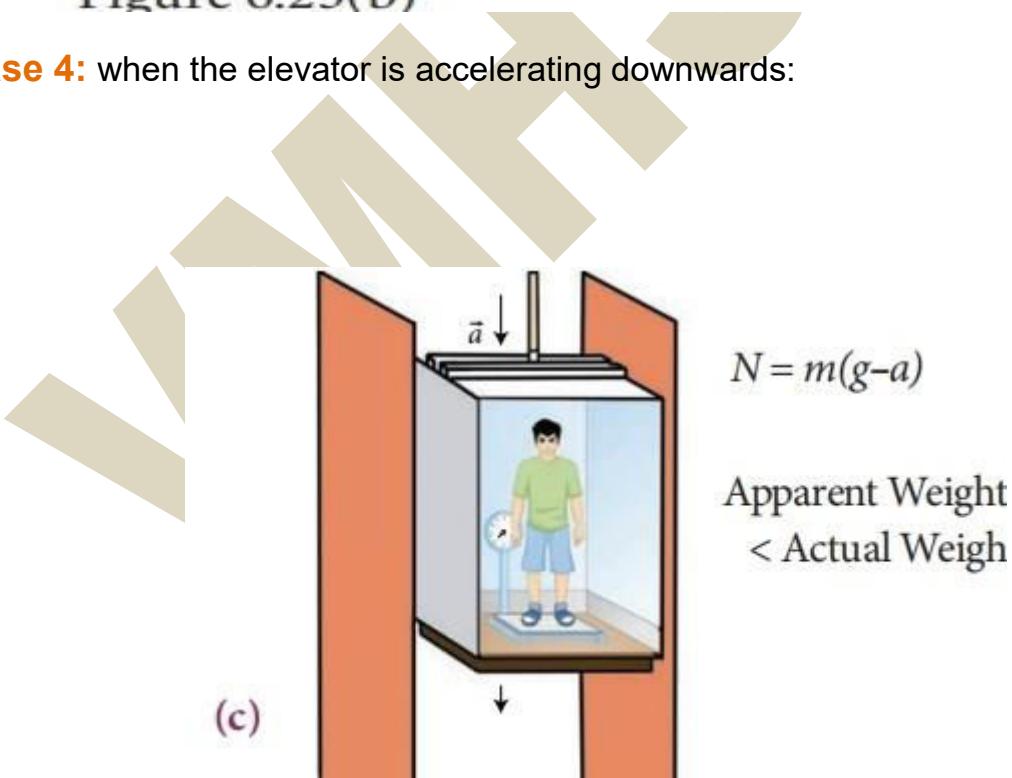
$$-mg\hat{j} + N\hat{j} = ma\hat{j}$$

By comparing the components,

$$N = m(g + a) \quad (6.68)$$

Therefore, apparent weight of the man is greater than his actual weight. It is shown in Figure 6.23(b)

❖ **Case 4:** when the elevator is accelerating downwards:



If the elevator is moving with downward acceleration ($\vec{a} = -a\hat{j}$), by applying Newton's second law on the man, we can write

$$\vec{F}_G + \vec{N} = m\vec{a}$$

Writing the above equation in terms of unit vector in the vertical direction,

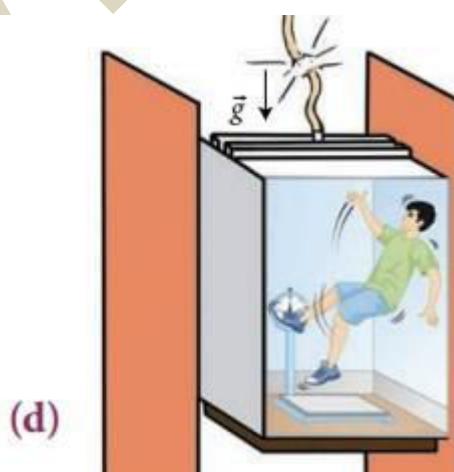
$$-mg\hat{j} + N\hat{j} = -ma\hat{j}$$

By comparing the components,

$$N = m(g - a) \quad (6.69)$$

Therefore, apparent weight $W = N = m(g-a)$ of the man is lesser than his actual weight. It is shown in Figure 6.23(c)

❖ **Weightlessness of freely bodies.:**



Free Fall
 $N = 0; g = a$

- ❖ Freely falling objects experience only gravitational force.
- ❖ As they are freely falling, they are not in contact with any surface (by neglecting air friction).
- ❖ The normal force acting on the object is zero.
- ❖ The downward force is equal to the acceleration due to gravity of the earth i.e. $a=g$.

From equation 6.69, we get.

$$a=g \quad \therefore N = m(g - g) = 0.$$

This is called the state of weightlessness. When the lift falls (when the lift wire cuts) with downward acceleration $a=g$, the person inside the elevator is in the state of weightlessness or free fall. It is shown in Figure 6.23(d)

Geo -stationary and polar satellite:

- The satellites orbiting the Earth have different time periods corresponding to different orbital radii.

Kepler's third law is used to find the radius of the orbit.

Geostationary satellite and polar satellite:

- ❖ The satellites orbiting the Earth have different time periods corresponding to different orbital radii.

Kepler's third law is used to find the radius of the orbit.

$$T^2 = \frac{4\pi^2}{GM_E} (R_E + h)^3$$

$$(R_E + h)^3 = \frac{GM_E T^2}{4\pi^2}$$

$$R_E + h = \left(\frac{GM_E T^2}{4\pi^2} \right)^{1/3}$$

Substituting for the time period (24 hrs = 86400 seconds), mass, and radius of the Earth, h turns out to be 36,000 km. Such satellites are called “geo-stationary satellites”, since they appear to be stationary when seen from Earth.

- ❖ India uses the INSAT group of satellites that are basically geo-stationary satellites for the purpose of telecommunication. Another type of satellite which is placed at a distance of 500 to 800 km from the surface of the earth orbits the earth from north to south direction.
- ❖ The time period of a polar satellite is nearly 100 minutes and the satellite completes many revolutions in a day.
- ❖ A Polar satellite covers a small strip of area from pole to pole during one revolution. In the next revolution it covers a different strip of area since the Earth would have moved by a small angle. In this way polar satellites cover the entire surface area of the Earth.

Figure 6.21 Polar orbit and geostationary satellite

Heliocentric system over geocentric system:

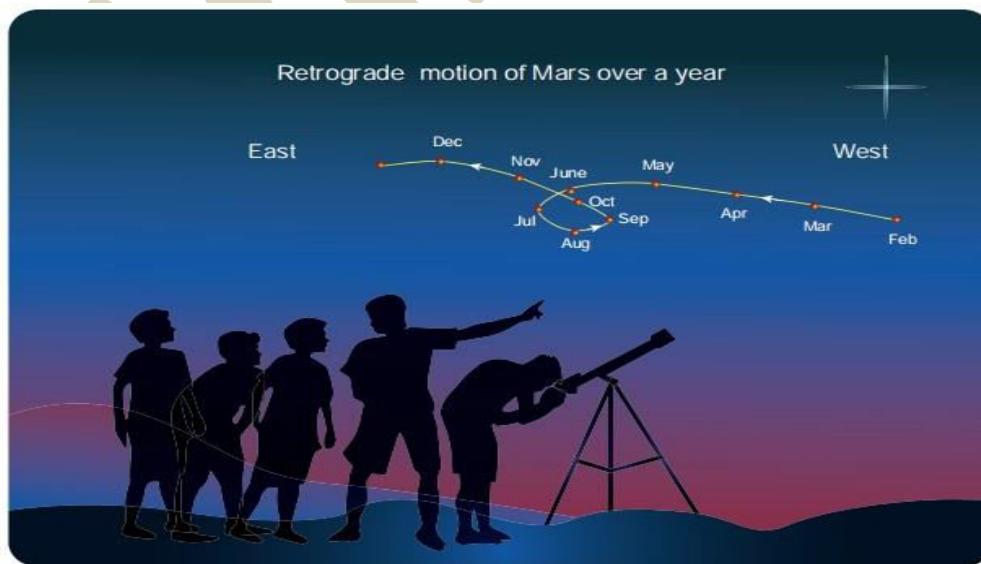


Figure 6.25 Retrograde motion of planets

- it can be seen that the planets move eastwards and reverse their motion for a while and return to eastward motion again. This is called “retrograde motion” of planets.
- To explain this retrograde motion, Ptolemy introduced the concept of “epicycle” in his geocentric model.
- According to this theory, while the planet orbited the Earth, it also underwent another circular motion termed as “epicycle”.
- According to this theory, while the planet orbited the Earth, it also underwent another circular motion termed as “epicycle”.
- A combination of epicycle and circular motion around the Earth gave rise to retrograde motion of the planets with respect to Earth
- But Ptolemy's model became more and more complex as every planet was found to undergo retrograde motion
- the Polish astronomer Copernicus proposed the heliocentric model to explain this problem in a simpler manner. According to this model, the Sun is at the center of the solar system and all planets orbited the Sun.

. The retrograde motion of planets with respect to Earth is because of the relative motion of the planet with respect to Earth.

Measurement of radius of the earth:

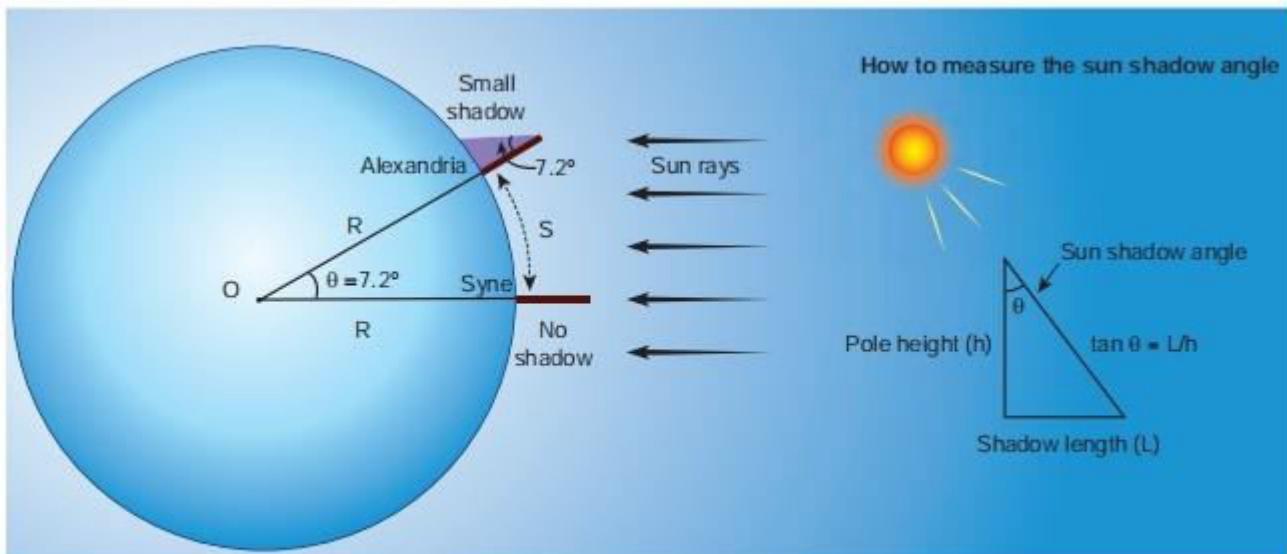


Figure 6.30 Measuring radius of The Earth

❖ during noon time of summer solstice the Sun's rays cast no shadow in the day Syne which was located 500 miles away from Alexandria

❖ At the same day and same time he found that in Alexandria the Sun's rays made 7.2 degree with local vertical as shown in the Figure 6.30

❖ He realized that this difference of 7.2 degree was due to the curvature of the Earth.

The angle 7.2 degree is equivalent to $\frac{1}{8}$ radian. So $\theta = \frac{1}{8}$ rad;

If S is the length of the arc between the cities of Syene and Alexandria, and if R is radius of Earth, then

$$S = R\theta = 500 \text{ miles,}$$

so radius of the Earth

$$R = \frac{500}{\theta} \text{ miles}$$

$$R = \frac{500}{\left(\frac{1}{8}\right)} \text{ miles}$$

$$R = 4000 \text{ miles}$$

1 mile is equal to 1.609 km. So, he measured the radius of the Earth to be equal to $R = 6436$ km, which is amazingly close to the correct value of 6378 km.

Measurement of earth shadow(umbra) radius during total lunar eclipse:

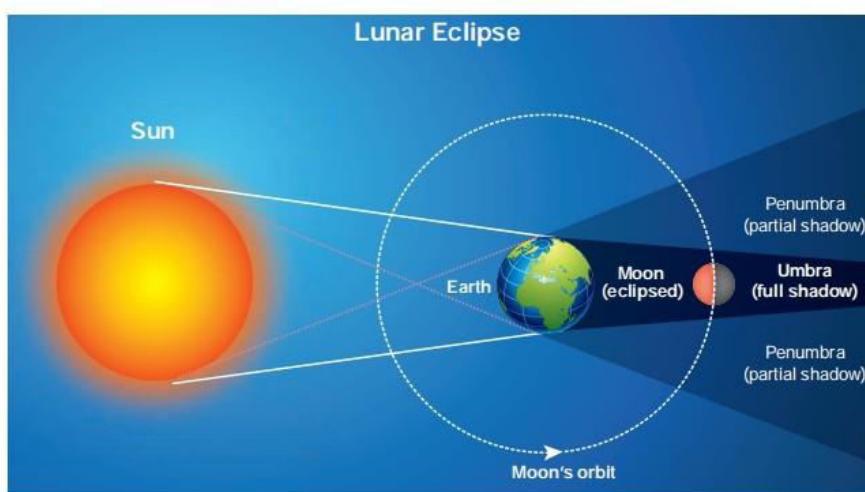


Figure 6.31 Total lunar eclipse

- ◆ It is impossible to measure the radius of shadow of the Earth at the point where the Moon crosses. Figure 6.31 illustrates this.
- ◆ When the Moon is inside the umbra shadow, it appears red in color. As soon as the Moon exits from the umbra shadow, it appears in crescent shape.
- ◆ By finding the apparent radii of the Earth's umbra shadow and Moon, the ratio of these radii can be calculated.
- ◆ The apparent radius of Earth's umbra shadow = $R_s = 13.3$ cm.

The apparent radius of the Moon = $R_m = 5.15$ cm

The ratio $\frac{R_s}{R_m} \approx 2.56$

The radius of the Earth's umbra shadow is $R_s = 2.56 \times R_m$

The radius of Moon $R_m = 1737$ km

The radius of the Earth's umbra shadow is $R_s = 2.56 \times 1737$ km ≈ 4446 km.

The correct radius is 4610 km.

The percentage of error in the calculation

$$= \frac{4610 - 4446}{4610} \times 100 = 3.5\%.$$

Why there is no lunar eclipse and solar eclipse every month?

- Moons orbit is tilted 5° with respect to Earth's orbit.
- Due to this 5° tilt, only certain periods of the year, the Sun, Earth, and Moon align in a straight line, leading to either a lunar eclipse or a solar eclipse depending on the alignment.